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Non-Interactive Timed Commitments



Non-Interactive Timed Commitment1 (NITC)

A (tcom, tcv , tdv , tfd)- non-interactive timed commitment scheme (NITC) is a tuple
TC = (PGen, Com, ComVrfy, DecVrfy, FDecom) of five algorithms with the following behaviour:

PGen 1κ 7→ crs

Com (crs,m) 7→ (C, πcom, πdec) in time at most tcom

ComVrfy (crs,C, πcom) 7→ (accept or reject) in time at most tcv

DecVrfy (crs,C,m, πdec) 7→ (accept or reject) in time at most tdv

FDecom (crs,C) 7→ (m or invalid) in time at least tfd

We require that for all κ, all crs output by PGen, all m and all C, πcom, πdec output by Com(crs,m),
it holds that

ComVrfy(crs,C, πcom) = accept, DecVrfy(crs,C,m, πdec) = accept, FDecom(crs,C) = m.

1Katz, Loss, and Xu [9]
Knud Ahrens SIGNITC Budapest 2025 1 / 16



NITC Overview

PGen(1κ) = crs

Connor Veronica

Com(crs,m) = (C, πcom, πdec) ComVrfy(crs,C, πcom) = (accept or reject)
commitment

(C, πcom)

Honest DecVrfy(crs,C,m, πdec) = (accept or reject)
decommitment

(m, πdec)

Dishonest FDecom(crs,C) = (m or invalid)
forced

decommitment

FDecom takes at least time tfd (delay).
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Properties

To be relevant for applications a NITC also needs to satisfy three further properties.

Practicality tcv , tdv ≪ tfd , i.e. verification is much faster than forcefully opening the commitment.

Hiding The commitment does not leak information about the message (for time tfd).

Binding The commitment can not be opened to two different messages.

Katz et al. [9] state that NITCs are useful for sealed bid auctions and as primitive for other
cryptographic protocols.
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Example for Application

Alice and Chris want to flip a coin over the internet.

Naive

Both send a random number and they take the sum of both numbers modulo 2.
Very fast, but easy to cheat.

Verifiable Delay Function (VDF)

Both compute a VDF with their random number as input (challenge) and send the output (response).
Slow, because both have to compute a VDF, but hard to cheat.

NITC

Both commit to a random number and only open their commitment once they received the other one.
Fast (if both are honest) and hard to cheat.
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Supersingular Isogeny Graphs



Isogeny Basics

Quantum secure schemes like SQISign2 or CSIDH3 use isogenies between supersingular elliptic
curves. They have small key sizes, but they are comparatively slow.

Isogenies

Isogenies φ are homomorphisms between elliptic curves.

They can be determined by their kernel.

The degree of φ is the number of points in its kernel.

Isogeny Graph

Dual isogenies φ̂ are “reverse” maps.

Isomorphic curves have the same j-invariant.

The isogeny graph has j-invariants as vertices and isogenies as edges.

2De Feo, Kohel, Leroux, Petit, and Wesolowski [7]
3Castryck, Lange, Martindale, Panny, and Renes [4]
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Deuring Correspondence

Let Bp,∞ be the quaternion algebra with Q-basis {1, i, j, k} and i2 = −1, j2 = −p, k = ij = −ji.

Supersingular Elliptic Curves

E is supersingular if and only if EndE is isomorphic to a maximal order O in Bp,∞.
Supersingular elliptic curves therefore have non-commutative endomorphism rings.

Deuring Correspondence4

An isogeny φ : E → E ′ of degree ℓ corresponds to a left ideal Iφ of norm ℓ in O ∼= EndE and
EndE ′ is isomorphic to the right order OR(Iφ) = {α ∈ Bp,∞ | Iφα ⊆ Iφ} of Iφ.

4Deuring [8]
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Isogeny Problems

Polynomial problems:

Vélu Compute isogeny φK : E → EK
∼= E/⟨K ⟩ given its kernel kerφ = ⟨K ⟩ for K ∈ E .

Complexity depends on smoothness and size of degree degφK = ordK .

KLPT Given an ideal I of a maximal order O ⊂ Bp,∞, find an equivalent ideal such that its
norm is small or a prime power.

Deuring Given O ∼= EndE , translate between isogenies φ : E → E ′ and the corresponding Iφ.

Hard problems5:

IsogPath Given two (isogenous) supersingular elliptic curves E ,E ′ and a prime ℓ, find a path
from E to E ′ in the ℓ-isogeny graph.

EndRing Given a supersingular elliptic curve E , find four endomorphisms that generate EndE
(or four quaternions in Bp,∞ that generate O ∼= EndE ) as a lattice.

5Wesolowski [10]
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Shortcuts

φ : E → E ′

Isogeny

degφ = d

Iφ ⊂ O
Ideal

nrd Iφ = d

Ĩφ ⊂ O
Ideal

nrd Ĩφ = d̃

φ̃ : E → E ′

Isogeny

deg φ̃ = d̃

EndE ∼= O
Deuring KLPT

EndE ∼= O
Deuring

Let p be of size 256 bit. We can use KLPT in two ways:

Type of KLPT Size of d̃ Complexity of φ̃

d̃ smooth (d̃ = 2e) ≈ p3 ≈ 2768 O((log d̃)2) ≈ 220

d̃ prime ≈ √
p ≈ 2128 Õ(

√
d̃) > 264

E E ′E1 E2 E−2 E−1
2 2 2e−4 2 2

√
p
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Supersingular Isogeny Graph Non-Interactive Timed Commitments
SIGNITC6

6Ahrens [1] (ia.cr/2024/1225)



Simplified Overview

PGen 1κ 7→ crs = parameters and pre-computation

Hiding/Binding:

Com (crs,m) 7→ (C, πcom, πdec) =
(
(Es ,KT , u), (), (Ks ,K

′
T )

)
u = m ⊖ F (j(ET ))

ComVrfy (crs,C, πcom) 7→ (accept or reject)

DecVrfy (crs,C,m, πdec) 7→ (accept or reject)

FDecom (crs,C) 7→ m m = u ⊕ F (j(ET ))

E0

Es
∼= E0/⟨Ks⟩

E ′
T
∼= E0/⟨K ′

T ⟩

ET
∼= Es/⟨KT ⟩

φs

φ′
T

φT = [φs ]⋆φ
′
T

φ′
s = [φ′

T ]⋆φs

ψ = φT ◦ φs

ψ̃
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Parameter Generation Algorithm PGen

Require: Security parameter 1κ

Ensure: crs = (crs0, crss , crsT , crsItI)

crs0 Starting curve E0, message group (M,⊕), inverse resistant function F : JSS → M

crss Pre-computations for φs

crsT Pre-computations for φT (or rather φ′
T )

crsItI Pre-computations for IdealToIsogeny

JSS is the set of supersingular j-invariants in Fp2 .

Definition (Inverse Resistant Functions)

A function F : X → Y is λ-inverse resistant, if for all y ∈ Y the preimage F−1(y) ⊆ X has at least
2λ elements.
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Commitment Algorithm Com

E0

Es

E ′
T

ET

φs

φ′
T

φT

φ′
sψ

ψ̃

Require: Common reference string crs, message m ∈ M
Ensure: (C, πcom, πdec) =

(
(Es ,KT , u), (), (Ks ,K

′
T )

)
1: Choose random isogeny φs : E0 → Es with kernel ⟨Ks⟩
2: Compute corresponding ideal Is

3: Choose random isogeny φ′
T : E0 → E ′

T with kernel ⟨K ′
T ⟩

4: Compute corresponding ideal I ′T
5: Compute KT = φs(K

′
T ) such that kerφT = ⟨KT ⟩

6: Compute ideal Iψ = Is ∩ I ′T corresponding to isogeny ψ = φT ◦ φs

7: Use IdealToIsogeny to get shortcut ψ̃ and ẼT
∼= Es/⟨KT ⟩ (Go back to step 3 if it fails)

8: Compute j̃T = j(ẼT ) and u = m ⊖ F (j̃T ) ∈ M ▷ F (j̃T ) = F (j(ET ))
9: return

(
(Es ,KT , u), (), (Ks ,K

′
T )

)
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Commitment Verification Algorithm ComVrfy

Require: Common reference string crs, commitment C and proof πcom

1: Check if Es is an elliptic curve over Fp2 , KT ∈ Es and u ∈ M
2: Optional: check KT ∈ F2

p2e ▷ Check upper bound for degree of φT

3: return (accept/reject)
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Decommitment Verification Algorithm DecVrfy

E0

Es

E ′
T

ET

φs

φ′
T

φT

φ′
sψ

ψ̃
Require: Common reference string crs, commitment C
Require: Message m, decommitment proof πdec

1: Check Es
∼= E0/⟨Ks⟩ and φs(K

′
T ) = KT

2: Compute an ideal Is corresponding to isogeny φs

3: Compute an ideal I ′T corresponding to isogeny φ′
T

4: Compute ideal Iψ = Is ∩ I ′T corresponding to isogeny ψ = φT ◦ φs

5: Use IdealToIsogeny to get shortcut ψ̃ and ẼT
∼= Es/⟨KT ⟩

6: Compute j̃T = j(ẼT ) and check u ⊕ F (j̃T ) = m ▷ F (j̃T ) = F (j(ET ))
7: return (accept/reject)
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Forced Decommitment Algorithm FDecom

Require: Common reference string crs, commitment C
Ensure: Message m

1: Compute ET
∼= Es/⟨KT ⟩ as codomain of φT : Es → ET

2: Compute jT = j(ET ) and m = u ⊕ F (jT )

3: return m
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IdealToIsogeny Algorithms

Variants one dimensional higher dimensional

Examples SQISign7 SQIsign2D-West8, SQIsignHD9

Prime SQISign-friendly primes p = c2k − 1 with c as small as possible.
Pre-computation crsItI can be empty crsItI contains basis of E0[2

k ]
Pro one dimesional isogenies isogenies of degree d | p2 − 1

Contra isogenies of degree d ≈ p3 isogenies of higher dimension

7Chavez-Saab, Corte-Real Santos, De Feo, Eriksen, Hess, Kohel, Leroux, Longa, Meyer, Panny, Patranabis, Petit,
Rodŕıguez Henŕıquez, Schaeffler, and Wesolowski [5]

8Basso, Dartois, Feo, Leroux, Maino, Pope, Robert, and Wesolowski [2]
9Dartois, Leroux, Robert, and Wesolowski [6]
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Conclusion



Conclusion

SIGNITC is a practical NITC that satisfies hiding and binding.

Advantages

Works purely within isogeny-based cryptography.

Presumably quantum secure.

Highly adjustable with (almost) arbitrary delay.

Explicit algorithms with known efficient implementations.

Disadvantages

Some algorithms and topics are quite involved.

Slightly weaker hiding and binding properties.

Knud Ahrens SIGNITC Budapest 2025 16 / 16
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Rodŕıguez Henŕıquez, Sina Schaeffler, and Benjamin Wesolowski. SQIsign algorithm specifications and supporting
documentation. Project Homepage, 2023. URL https://sqisign.org/spec/sqisign-20230601.pdf.

https://eprint.iacr.org/2024/1225
https://sqisign.org/spec/sqisign-20230601.pdf


References II

[6] Pierrick Dartois, Antonin Leroux, Damien Robert, and Benjamin Wesolowski. SQIsignHD: New dimensions
in cryptography. In Marc Joye and Gregor Leander, editors, Advances in Cryptology – EUROCRYPT 2024, pages
3–32, Cham, 2024. Springer Nature Switzerland. ISBN 978-3-031-58716-0. doi: 10.1007/978-3-031-58716-0 1.

[7] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski. SQISign: Compact
post-quantum signatures from quaternions and isogenies. In Shiho Moriai and Huaxiong Wang, editors, Advances
in Cryptology – ASIACRYPT 2020, pages 64–93, Cham, 2020. Springer International Publishing. doi:
10.1007/978-3-030-64837-4 3.

[8] Max Deuring. Die Typen der Multiplikatorenringe elliptischer funktionenkörper. Abh. Math. Sem. Hansischen
Univ., 14:197–272, 1941. doi: 10.1007/BF02940746.

[9] Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and timed commitments. In Rafael
Pass and Krzysztof Pietrzak, editors, Theory of Cryptography, pages 390–413, Cham, 2020. Springer International
Publishing. doi: 10.1007/978-3-030-64381-2 14.

[10] Benjamin Wesolowski. The supersingular isogeny path and endomorphism ring problems are equivalent. In 2021
IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1100–1111, 2022. doi:
10.1109/FOCS52979.2021.00109.



Parameters

We choose E0 : y
2 = x3 + x with O0 = ⟨1, i, i+j

2 ,
1+k
2 ⟩Z and p ≡ 3 mod 4.

The message group is M = Z/NZ for an integer N ≤ ⌊p1/4/12⌋.

For JSS ⊂ Fp2 ∼= Fp[i] we take F : JSS → M = Z/NZ, a+ bi 7→ a+ |b| mod N.

Then we have the following:

Membership testing and group operations in M are efficient.

F can be computed efficiently.

F is sufficiently inverse resistant.

Knud Ahrens SIGNITC Budapest 2025 1 / 7



NIST level I with κ = 128

SQIsign-friendly prime p = pI1973 with log2 p
I
1973 ≈ 251.9 from the specifications of SQIsign [5].

pI1973 = 0x34e29e286b95d98c33a6a86587407437252c9e49355147ffffffffffffffffff

p2 − 1 = 276 · 336 · 74 · 11 · 13 · 232 · 37 · 592 · 89 · 97 · 1012 · 107 · 1092 · 131 · 137 · 1972 · 223
· 239 · 383 · 389 · 4912 · 499 · 607 · 7432 · 1033 · 1049 · 1193 · 19132 · 1973
· 32587069 · 275446333 · 1031359276391767

ds = 2150

dT = 74 · 11 · 13 · 37 · 89 · 97 · 107 · 131 · 137 · 223 · 239 · 383 · 389 · 499 · 607 · 1033 · 1049
· 1193 · 1973 · 32587069 · 275446333 (delay of roughly 1 minute10)

dT = 1031359276391767 (estimated delay of roughly 1 day10)

For the group M = Z/NZ we choose N ≤ 259 < 1036363420827959282.

10Using Sage on an old laptop
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Security



Computing Isogenies

Let φ be an isogeny of prime degree q.

Vélu’s formulae compute φ in time O(q).

The
√
élu algorithm11 computes φ in time O(

√
q).

The crossover point for optimised algorithms is at q ≈ 100.

Assumption (Isogeny Computation Assumption)

Given a supersingular elliptic curve E and a point K of order d on E. Let φ be the isogeny with
kernel ⟨K ⟩ and d =

∏
peii the prime factorization of d. Computing the codomain E/⟨K ⟩ of φ takes

time Θ
(∑

pi<100 eipi +
∑

pi>100 ei
√
pi
)
.

11Bernstein, De Feo, Leroux, and Smith [3]
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Practical NITC

SIGNITC is a NITC scheme:

All algorithms have the correct input and output arguments.

For all κ and m ∈ M, every set of honestly generated (κ,m, crs,C, πcom, πdec) satisfies
verification ComVrfy(crs,C, πcom) = accept = DecVrfy(crs,C,m, πdec) and forced
decommitment FDecom(crs,C) = m.

SIGNITC is a practical NITC:

The subroutines used in Com and DecVrfy take time poly(log p).

The degree dT of the long isogeny φT can be made almost arbitrarily large / non-smooth.

We can choose dT such that tcom, tcv , tdv ≪ tfd .

Knud Ahrens SIGNITC Budapest 2025 4 / 7



Hiding

The pre-computation phase can only provide a negligible advantage for an adversary A.

In the online phase A outputs two messages m0,m1 and receives the output Cb = (Es ,KT , ub) of
Com(crs,mb) for a uniform b ∈ {0, 1}.

Proof sketch

F (jT ) is either F0 = ⊖ub ⊕m0 or F1 = ⊖ub ⊕m1.

Since F is inverse resistant, the advantage over guessing is negligible.

Therefore A has to compute jT = j(ET ) in order to find the correct b′ = b.

This is as slow as FDecom and therefore takes time at least tfd.
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Querying

In the security game IND-CCA, A has oracle access to FDecom except for FDecom(crs,Cb).

FDecom(crs,E ′,K ′, ub) = FDecom(crs,Es ,KT , ub) = mb for E ′/⟨K ′⟩ isomorphic to
ET

∼= Es/⟨KT ⟩.
Deciding if E ′/⟨K ′⟩ is isomorphic to ET is difficult without computing the corresponding isogeny
with kernel ⟨K ′⟩.
Isogenies of large prime degree can not be computed efficiently.

If ordK ′ is a large prime, the oracle can not be computed efficiently.

Adapted IND-CCA

For the commitment Cb = (Es ,KT , ub) we need to to disallow queries of the form
FDecom(crs,E ′,K ′, ·) if E ′/⟨K ′⟩ is isomorphic to ET

∼= Es/⟨KT ⟩ or if ordK ′ ∤ dT .

Knud Ahrens SIGNITC Budapest 2025 6 / 7



Binding

Lemma (Perfect Binding)

A valid commitment C = (Es ,KT , u) fixes a unique message m ∈ M.

Proof.

Es and KT ∈ Es fix ET
∼= Es/⟨KT ⟩ up to isomorphism and jT = j(ET ) is unique.

F is a function, u,F (jT ) ∈ M and M is an additive group. Therefore m = u ⊕ F (jT ) is unique.

Using the shortcut gives jT or jpT and F (jT ) = F (jpT ).

If DecVrfy(crs,C,m, πdec) and DecVrfy(crs,C,m′, π′dec) output accept, then
m ⊖ F (jT ) = m′ ⊖ F (jT ) and hence m = m′.

If DecVrfy accepts (crs,C,m, πdec), then u = m ⊖ F (jT ) and FDecom outputs the correct
m = u ⊕ F (jT ).

Knud Ahrens SIGNITC Budapest 2025 7 / 7
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